

Faster Attacks on Full GOST

Nicolas T. Courtois

University College London, UK

Russian Subtitles On:

code breakers ==

взломщики кодов

GOST Cipher

трудновскрываемый шифр

4 Courtois FSE 2012

BEWARE

I'm going to cheat you and totally ignore the large data complexity of many attacks...

 \Rightarrow just compare the running time

GOST Block Cipher

It is NOT correct to compare GOST to DES.

- 256 bits key = a military level of security
- a former "Top Secret" government algorithm used by major banks etc...
 - not a commercial algorithm like DES...
 - DES was "breakable" from day 1
 - » due to reduced key space = 56 bits
- DES could be used ONLY for unclassified documents. In contrast:

- GOST "does not place any limitations on the secrecy level of the protected information"
 - cf. preface to English translation of GOST, by Aleks. Malchik and Whit Diffie

GOST in ISO

- In 2010 GOST was also submitted to ISO to become an international standard.
- In the mean time GOST was broken...
 - plethora of new attacks...

Black-Box Algebraic Complexity Reduction

8 Courtois FSE 2012

Black Box Complexity Reduction Paradigm [Courtois 2011]

Black-box high-level guess and determine methods which transform an attack on 32 rounds of GOST into an attack on e.g. 8 rounds of GOST with much less data.

Reductions

- Given 2^X KP for the full 32-round GOST.
- Obtain Y KP for 8 rounds of GOST.
- This valid with probability 2^{-Z}.
- For a proportion 2^{-T} of GOST keys.

Two examples were given on Monday.

As many 18 distinct reductions of this type with a large variety of 2^X,Y, 2^{-Z}, 2^{-T} can be found at <u>eprint/2011/626</u>

Black-Box Complexity Reduction - Already Known?

Slide / Fixed Point / Cycling / Guess-Det. / Involution / Etc..

WHAT'S NEW?

- There are now many completely new attacks which are exactly none of the above [though similar or related].
- Many of these attacks were <u>never studied</u> because they generate only a few known plaintexts, and only in the last 5 years it became possible to design an appropriate last step for these attacks which is a low-data complexity key recovery e.g.

- software algebraic attack
- MITM attack, also gets highly non-trivial as seen on Monday...

One Example of Black Box Reduction

Which Attacks on GOST Are Now The Fastest?

A Very Weird Attack

In <u>eprint/2011/626</u>, Fact 23, page 41.

With probability 2⁻³² over the 256-bit keys, they key can be recovered in time of 2¹⁵⁴.

Observe that $2^{32} \times 2^{154} = ONLY 2^{186}$ $< 2^{192}$ [FSE 2012]

Compare:

Courtois Attacks 2011/626

Dinur-Dunkelman-Shamir FSE 2012

Conclusion:

Single Key Attacks do NOT capture realistic attacks with random and uniformly distributed keys

Last But Not Least

Latest Attack on GOST [March 2012]

20 Courtois FSE 2012

Most Recent Attack

- a true single key attack.
- based on sets of differentials.
- $T = 2^{178}$, better than any previous.
- submitted to eprint last week.

How To Find Such An Attack

Best differential property we ever found was found BY HAND.

Is systematic approach possible?

Our Attack = Graph Walks With Costs

23 Courtois FSE 2012

Remark:

- the structure of this graph does NOT depend on the S-boxes
- only costs (probabilities) depend on the S-boxes

